
Class X

A.I.M.Ed Maths Scholarship Eligibility Test-2016			Class X	
	triangle with hypotenuse pendicular drawn from ve			
1) 2.4	2) 1.8	3) 3.6	4) 1.7	
8. Number of circles that can be drawn passing through all the points $(1+t, 2+t)$ when $t = 1, 3, 5, 7, 9$ is				
1) 0	2) 5	3) 10	4) 6	
9. Number of all possibl $a=4, b=5$ and $c=6$	e circles drawn to touch al 5 is	l the sides of triangle	formed by	
1) 1	2) 0	3) 4	4) 3	
10. $p + q + pq = 8, q + 10$	r+qr = 9, r+p+rp = 3 v	where p, q, r,>,0 (p, c	q, r are real) then	
$\sqrt{(1+p)(1+q)(1+p)}$	·) =			
1) 6√2	2) $6\sqrt{10}$	3) $3\sqrt{5}$	4) $2\sqrt{5}$	
11. PQ and PR are tangents to a circle of radius r. $QR = \sqrt{8}$ and $ QPR = 90^{\circ}$ then r =				
1) 1	2) 3	3) $\sqrt{\frac{8}{3}}$	4) 2	
12. A line l touches two	12. A line l touches two circles S_1 and S_2 of radii 3 & 4 units respectively at A and B. S_1			
and S_2 touch each of	her externally; then lengt	hAB=		
1) $2\sqrt{3}$	2) $4\sqrt{3}$	3) $\sqrt{7}$	 4) 2√7 	
13. Number of positive i	nteger pairs (x,y) satisfyin	g 3x+4y=24 is		
1) 1	2) 3	3) 4	4) Infinite	
	its radius each are kept in of gap region so formed i			
1) $\sqrt{3} - \pi$	2) $2(2\sqrt{3}-\pi)$	3) $\frac{\pi\sqrt{3}+2}{2}$	$4) \frac{\pi + \sqrt{3}}{2}$	
15. Number of factors o	f $x^{32} - y^{32}$ is			
1) 6	2) 32	3) 4	4) 2	
			3	

Г

16. P is a point inside equ	ilateral $\triangle ABC$ of side	le 8. PA_1, PA_2, PA_3 , are perp	pendicular lengths		
from P to sides of the	triangle. Then PA_1 +	$PA_2 + PA_3 =$			
1) $\sqrt{40}$	2) $\sqrt{48}$	3) $\sqrt{32}$	4) $\sqrt{8}$		
17. In a rectangle ABCD, P is an interior point such that $PA = 4$, $PB = 3$, $PC = 5$ then PD=					
1) $4\sqrt{2}$	2) 6	3) 4	4) $3\sqrt{2}$		
18. In a class average ma then the ratio of no. of		total sutdents are respective	ely 50, 60 and 56		
1)2:5	2) 1 : 2	3)2:3	4) 5 : 6		
		{1}, {2,3}, {4, 5, 6}, {7, 8	, 9, 10} is		
1) 15697	2) 16290	3) 12968	4) 14630		
		led by x - 1, x - 3 leaves remain it is divided by $x^2 - 4x + 3$			
1) $2x + 3$	2) x - 4		4) $x + 3$		
$21. \left(1\frac{1}{2}\right) \left(1\frac{1}{3}\right) \left(1\frac{1}{4}\right) \left(1\frac{1}{5}\right)$	$21.\left(1\frac{1}{2}\right)\left(1\frac{1}{3}\right)\left(1\frac{1}{4}\right)\left(1\frac{1}{5}\right)\dots 400 \text{ terms} =$				
1) 207	2) 300	3) 301	4) 201		
22. Which of the followin integers?	22. Which of the following integers cannot be written as the sum of four consecutive odd				
1) 2016	2) 4032	3) 2020	4) 4040		
23. If 8 and 2 are roots of $x^2 + ax + \beta = 0$ and 3, 3 are the roots of $x^2 + \alpha x + b = 0$ then					
the roots of $x^2 + ax$.					
1) 1, -1	2) -9, 2	3) -8, -2	4) 9, 1		
24. Mean of x and $\frac{1}{x}$ is m then mean of $x^2 + \frac{1}{x^2}$ is					
1) m ²	2) $\frac{m^2}{2}$	3) $2m^2 - 1$	4) $2m^2 + 1$		

A.I.M.Ed Maths Scholarship Eligibility Test-2016			Class X
25. Distance between the tw	wo points $A(\sin 0^0, c$	$\cos 90^{\circ}$) $B(\cos \alpha, \sin \alpha)$	is
1) 2	2) 1	3) 0	4) Cannot say
26. A(1,2) B(-3,4) C(7,-1) 1) 2 :3	are collinear. Then the 2) 3 : 2	he ratio in which A divid 3) 1 : 3	les BC 4) 3 : 4
27. Slope of the line $\frac{x}{a \cos a}$	$\frac{y}{\alpha} + \frac{y}{b\sin\alpha} = 1$		
1) $\frac{-b}{a} \tan \alpha$	2) $\frac{b}{a} \tan \alpha$	3) $\frac{a}{b} \tan \alpha$	4) $\frac{-a}{b} \tan \alpha$
28. P, Q, R the points (l,m)	(1,2)(3,4) respective	ely $PQ \perp QR$ then	
1) 1 - m = 3	2) $1 + m = 3$	3) $1 + m = 1$	4) $lm = 3$
29. In a circle with radius 1 area of $\triangle AOB$ is 1) $\frac{7\sqrt{3}}{2}$		haking an angle 120° at 3) $\frac{49\sqrt{3}}{4}$	the center O. The 4) $49\sqrt{3}$
30. The ortho center of the	triangle formed by th	the lines $x + 2y - 3 = 0$, 2	2x - y - 1 = 0;
x + y = 5 is 1) (1, 2)	2)(1,1)	3) (1, 3)	4) (1, 4)
31. Area of the triangle form	ned by the line passin	ng through $(6, -4)$ and (-3)	3,8) along with
1) 3sq.units	2)4sq.units	3) 5 sq units	4) 6 sq units
32. The mean of x items is the new mean is :	$\frac{1}{x}$. If the first term is	increased by 1, second b	by 2 and so on then
1) $\bar{x} + \frac{n+1}{2}$	2) $\frac{1}{x+n}$	3) $\bar{x} + \frac{n}{2}$	4) $\frac{1}{x} + \frac{n(n+1)}{2}$
33. In a stream running at 2	- ·		-
starting point in 33min. I 1)24kmph	2) 22 kmph	motor boat in still water 3) 20 kmph	4) 30 kmph

Г

34. O is the center of the circ 1) OD	le. BC is a chord. <i>OD</i> ⊥ 2) 2OD	<i>BC</i> , AB is the diat 3) 30D	meter then AC = 4) 4OD	
35. The mathematician who d 1) Newton	• · · ·		4) Pythogoras	
36. Who was the first mathem 1) Gauss	atician to give formula f 2) Euler	for $\sum n^2$ and $\sum n^3$ for 3) Bhaksara		
 37. Indian mathematician in their chronological order A) Brahma Gupta B)Aryabhata C) Bhaskara D) Mahavira 				
1) A-C-B-D	2) B-A-D-C	3) C-A-B-D	4) D-A-B-C	
38. The mathematican who gave an immediate solution to $\sum_{n=1}^{100} n$. When he was a boy of just 10 year old ?				
	2) Renedescartes	3) C.F.Gauss	4) Ramanujan	
39. The term 'scne' is derived 1) Ardhajya	2) Sindie	mations of the word 3) Kotijya	4) Sinus	
40. If $n = 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot 2015$				
$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + .$	$\dots \frac{1}{\log_{2016} n} =$			
1) 1	2) 2	3) 3	4) 2016	
41. If $\log_{12} 18 = a$ and $\log_{24} a$	54 = b then $ab + 5(a - b)$	b) =		
1) 1	2) 2	3) 4	4) 5	
42. If $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \cos ce\theta + \cot\theta$ then θ lies in the quadrants				
1) I or III	2) I or II	3) I or IV	4) II or III	

A.I.M.Ed Maths Scholarship Eligibility Test-2016

43. $\left[\frac{\sqrt{3} + 2\cos A}{1 - 2\sin A}\right]^{-3} + \left[\frac{1 + 2\sin A}{\sqrt{3} - 2\cos A}\right]^{-3} = $ for valid angular values of A				
1) 1	2) $\sqrt{3}$	3) 0	4) -1	
1/1/ The sum of the inte	gers from 1 to 100 which	h are not divisible by 3 or	5 is	
1) 2317	2) 2632	3) 4735	4) 2489	
$45. \sqrt{(1 \times 2 \times 3 \times 4) + 1} = 5$	$\sqrt{(2\times3\times4\times5)+1} = 11,\sqrt{(2\times3\times4\times5)+1} = 11,\sqrt{(2\times3\times5)+1} = 10,\sqrt{(2\times5)+1} = 10,\sqrt{(2\times5)+1}$	$\overline{(3 \times 4 \times 5 \times 6) + 1} = 19 then \sqrt{(3 \times 4 \times 5 \times 6) + 1}$	$\overline{43 \times 44 \times 45 \times 46) + 1} =$	
1) 1978	2) 1979	3) 1980	4) 1981	
46. If n(A) = n(B) then	A,B are sets			
1) D	$\overline{2}$) Equal	3) Equivalent	4) Comparable	
47. In a class of 40 students, who takes tea or coffee, 20 takes tea but not coffee and 24 takes tea then the no. students who takes coffee only is				
1) 4	2) 16	3) 20	4) 32	
48 If A = {a b c d e f} f	hen the no_subsets of A	which contains {a,c,e} is	3	
1) 8	2) 16	3) 32	4) 64	
49. If $n \in N$ then x^{2n+1}	y^{2n+1} is divisible by			
1) x -1	2) x - y	3) $x + y$	4) x + 1	
50. If $x^2 + Px + q = 0$ and $x^2 + qx + p = 0$ have a common root then $1 + p^3 + q^3 =$				
1) 1	2) pq	3) 2pq	4) 3pq	
51. The roots of $\frac{31}{x-47} + \frac{47}{x-31} = 2$ are				
1) 38, 77	2) 39, 78	3) 39, 79	4) 39, 77	
52. A train running between two stations A and B arrives at its destination 10 min late when its speed is 50km/hr and 50 minutes late when its speed is 30km/hr. How far is station A from B				
1) 30	2) 40	3) 50	4) 60	

A.I.M.Ed Maths Scholarship Eligibility Test-2016		Class X		
53. If the ratio of boys to $3(B+G) =$	girls in a class is B and	l the ratio of girls to Boys	s is G, then	
1) 3	2) < 3	3) > 3	$(4) < \frac{1}{3}$	
	tively. At the completion	mes for 6, 10, 12 years at ion of each scheme, he go		
What is the ratio of in				
1) 2 : 3 : 6	2) 6 : 3 : 2	3) 3 : 5 : 6	4) 6 : 5 : 3	
55.In ΔABC , DE BC th			8	
1) 10.4	2) 2.6	4	x	
3) 15.6	4) 20.8	A 3 E	5.2	
56. In $\triangle ABC$, D, E, F are	•		he coordiantes of	
DEF are $D(2,7) E(3, -1) = 0$				
1) (1,5)	2) (3, 9)	3) (5, 7)	4) (6, 12)	
57. If a,b,c are in G.P. tha	n $\log a$, $\log b$, $\log c$ are	e in		
1) A.P	2) G.P	3) H.P	4) NONE	
58. If $f(x) = 2^x$ then $\frac{f(x)}{f(x)}$	58. If $f(x) = 2^{x} then \frac{f(x+3)}{f(x-1)} =$ 1) f(x) 2) f(2) 3) f(4) 4) f(3)			
1 f(x)	2)f(2)	3) f(4)	(4) f(3)	
59. If α and β are the roots of $ax^2 + bx + c = 0$ then $\alpha^2 + \beta^2 =$				
b^2	c^2	b^2 And	b^2 $2ac$	
$1) \frac{b^2}{a^2}$	2) $\frac{c^2}{a^2}$	$3) \frac{b^2 - 4ac}{a^2}$	$4) \frac{b^2 - 2ac}{a^2}$	
60. nth term of $1 + (1 + 3)$	3) + (1+3+5)+ (1+3	s + 5 +7) +		
1) 1 + 3 + 5 +	+n 2) n^2	3) 2n-1	4) $\frac{n(n+1)}{2}$	