CLASS-VIII

- 1) The book "How to Solve it" is written by
 - 1) George Cantor
- 2) George Polya
- 3) John Nepier
- 4) Lucas

- 2) For all a, b belongs to the set of Rational numbers,
 - a + b is also a Rational number. This can be represented as:
 - 1) $\forall a,b \in Q, a+b \notin Q$
- 2) $\forall a,b \in R, a+b \in R$
- 3) $\forall a, b \in Q, a+b \in Q$
- 4) $a,b \in R$, $\forall a+b \in R$
- 3) The additive inverse of the product of the reciprocals of $-\frac{9}{2}$ and $\frac{5}{18}$ is added to
 - $-\frac{4}{5}$. The result is:
 - 1) $\frac{8}{5}$

- 2) $-\frac{8}{5}$
- 3) $\frac{9}{20}$
- 4) 0
- 4) The number that can not be inserted in between 2 and 3
 - 1) $\frac{17}{8}$

2) $\frac{9}{4}$

3) $\frac{5}{2}$

- 4) $\frac{13}{4}$
- 5) The number $0.7\overline{29}$ is expressed as $\frac{p}{q}$ then the value of $\frac{q-p}{q+p}$ =
 - 1) $\frac{67}{428}$

- 2) $\frac{53}{402}$
- 3) $\frac{43}{403}$
- 4) $\frac{41}{402}$

- 6) $n \in \mathbb{N}, \ \Sigma \frac{1}{2^n} =$
 - 1) $\frac{1}{2}$

2) 1

3) 2

- 4) infinet,
- 7) Here are 60 multiple choice questions in the test. If 2 marks are awarded for every correct answer and 1 mark is deducted for every wrong answer, a boy got 45 marks after answering all the questions. The number of questions that the boy answerd wrongly?
 - 1) 45

2) 35

3) 15

4) 25

A.I.M.Ed Mains Scholars	nip Eligibility Test-2	2019	Class VIII		
8) There are 232 pages in a book. Then total number of digits used in printing page numbers:					
1) 588	2) 586	3) 608	4) 605		
9) The present ages of Ravi and Fathima are in the ratio 7: 5. Ten years later the of their ages will be 9: 7. Then the linear equation to solve the problem is of form:					
1) $42x+70=38x+90$	2) 49x -	-70 = 45x + 90			
3) $35x + 70 = 45x + 90$	4) 56x +	-70 = 54x + 90			
10) ab is a two digital nur number the digits are			s added to the		
1) 74	2) 29	3) 38	4) 56		
11) A village population is increased by 240 people and then the new populaton is decreased by 10%, the village now had 34 less people than it did before the increase. Then original population is					
1) 2466 12) $\frac{(a+b)^{a}.(a-b)^{b}}{(a^{-1}+b^{-1})^{a}.(b^{-1}-a^{-1})^{a}}$	2) 2740 b is	3) 2500	4) 2160		
1) 1	2) a + b	3) $(ab)^{a+b}$	$4) \left(a+b\right)^{ab}$		
13) If $x^{x\sqrt{x}} = (x\sqrt{x})^x$ then $x =$					
1) $\frac{3}{2}$	2) $\frac{2}{9}$	3) $\frac{9}{4}$	4) 4/9		
14) If $x = a + \sqrt{a^2 - 1}$ then $2a =$					
$1) x - \frac{1}{x}$	2) $x + x^{-1}$	3) $x^2 + \frac{1}{x^2}$	4) $\frac{x}{2}$		
15) If $3^x = 5^y = 75^z$, then	xy =				
1) x(2y+z)	$2) \ z(2x+y)$	3) $(2x+y)$	4) $y(2z+1)$		

16) If $\angle A = (2x-17)^0$, $\angle B = (3x-53)^0$ and $\angle c = (5x-50)^0$. If $\angle A$, $\angle B$, $\angle C$ forms a

3) 1130

complete angle, then the difference between longest and smallest angle is

2) 1110

1) 1120

4) 1140

	17) $\frac{1}{a} + \frac{1}{b} = \frac{1}{13}$ where	re a, b are natural nun	nbers.	
	(A) $a = b = 26$	(B) $a = 13$, $b = 13$	(C) a = 14, b = 1	3 x 14
	1) (A) and (B)	ents the correct stater 2) (A) and (C) 3) (B) and (C) 4) (A) (B) and (C)
	18) a, b, c are square	es of three consecutiv	ve integers and (b - a)	= 87 then c is
	1) 452	2) 44 ²	3) 43 ²	4) 462
			$C = 24 \times 4 + 4 = 20$ $C = 24 \times 4 + 4 = 20$	(9-6)+(100-8)=192
	D = 84(20+19)	= 3276 then the false		
1	1) B 20) If CAT = FEY an	2) A ad APE = DTJ then B0	OX =	4) C
100	1) ETZ	2) ESC	3) GSA	4) DTC
1	21) What comes nex	kt in the series: 2, 3,	10, 15, 26,	
1	1) 31	2) 32	3) 35	4) 38
1	22) π day is			
	1) July 22nd	2) Feb 22nd	3) March 14th	4) December 14th
7			e area of shaded region unshaded region in the 3) 196 4)	
14	graze a maximum		a 35m by 26m rectangule the field. But it failed h of the rope tide?	
	1) 21m	2) 18m	3) 14m	4) 42m
7	the difference in	measure of two. Ar	x and y , the distance lectangle with breadth and rectangle are equal	y is constructed on
100	1) $x^2 + y^2 - 2xy$	$y=0$ 2) x^2	$(x^2 - y^2 + 2xy = 0)$	
The Control of the Co	3) $x^2 - y^2 - 2xy$		one of these is true	
1	26) A circular field	of area 616m ² is with	a circular path of area	770 m² laid outer
	1) 14	of the path in mt 2) 21	3) 7	1) 12
1		2)21	3)1	4) 12

		pproach to the fo	ormula $A = \pi r^2$ is pres	sented in
	A book of Jews	2) An l	Indian book	
3).	A recreational book	4) A bo	ook on Activity approa	nch
and	thmetic mean of 9 of 123 are wrongly tak	observations is 5 en as 34 and 32 2) 54	54. In doing so the two Then the correct mea 3) 49	o observations 43 an is 4) 53
-/		2) 34	3) 49	4) 33
29) For the	r a set of 5 observati n arithmetic mean i	ions, 17 is estim s	ated mean and sum o	f deviations is -5,
1)	12	2) 22	3) 18	4) 16
1)	he median of the da $x < 31$ ode does not depend	2) $x = 31$	and x is 31, then the 3) $x > 31$	e value of x is 4) 1 or 2
1) n	umber of observation or 2		ues of all observations ad 2	
32) If a	$a^{(m)^n} = \left(a^m\right)^n$, then m	ı =		
1)	$n^{\frac{1}{n-1}}$	2) $m^{\frac{1}{n-1}}$	3) $n^{\frac{1}{m-1}}$	4) None of these
33) In 7	Γaj three star hotel, t people left. If 198 p	there are 175 pe eople are preser	ople. After sometime at right now, then the	x people came and value of x is
1) 9	05	2) 65	3) 85	4) 75
tim	ies that number incr	eased by 30 is _	1 1 1 mm	54, then the value of 4
1)	128	2) 124	3) 126	4) 122
				e. The score in social
is -	$\frac{4''}{5}$ of more scored i	n mathematics.	If the total marks is 2	25, then the marks
	red in mathematics			
1)	80	2) 95	3) 65	4) 75

36)	In the Eternal triangle h	ypotenuse is $a^2 + b^2$,	then the two legs of t	he triangle are		
	1) a, b	2) a + b, a - b	3) $a^2 - b^2$, ab	4) $2ab, a^2-b^2$		
37)	$\sum n^3 =$					
	1) $(\sum n)^3$	2) $\sum n^2$	$3)(\sum n)^2$	4) $\sum n.\sum n^2$		
38)	The wrong one in the s	eries 1 2, 8, 20, 40, 68	8, 112, 168			
	1) 168	2) 112	3) 40	4) 68		
39)	The least number which square	h must be subtracted i	from 4215 to make it	a perfect		
	1) 19	2) 10	3) 185	4) 119		
40)	The number of non per	fect square numbers t	hat are between 289 a	and 324		
	1) 34	2) 36	3) 41	4) 43		
41)	The number 12345432	21 can be expressed as 2) 11111		natural number		
42)	Taj mahal is an examp		3) equal ratio	4) inverse ratio		
43)	43) Given $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$ then $\frac{3a + 5c - 4e}{3b + 5d - 4f} =$					
	1) $\frac{a}{b}$	2) 1	3) 0	4) 4		
11)	The odd one in the seri	es · 3, 5, 8, 13, 20 32	2, 44, 61 is			
77)	1) 32	2) 20	3) 44	4) 61		
45)	Sum of the natural nur	mbers from 10 to 99 is	- made at a	omnie Ila A (2)		
	1) 4910	2) 4905	3) 4915	4) 4907		
46)	The ratio of tens digit a many possible values ca	and the units digit of a	two digits number is	2:3. How		
	1) 3	2) 4	3) 2	4) 5		
45	2 2.	63 then $x^2 + y^2 =$				
(47)	$xy = 6$, $x^2y + xy^2 + x + y$ 1) 81	2) 18	3) 69	4) 78		

ľ						
	48) $\sqrt{426 + \sqrt{218 + \sqrt{46 + \sqrt{9}}}}$					
	1) 26	2) 24	3) 23	4) 21		
	49) If $a \otimes b = a^2 + b^2 - ab$ then $(a+b) \otimes (a-b) =$					
	1) $a^2 + 3b^2$		3) $3a^2 + b^2$	4) $a^2 - 3b^2$		
	50) Which of the following	g data have same value $2) \{2, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,$	ie as mean, median	and mode		
	1) {1, 2, 3, 4, 5} 3) {3, 7, 11, 9, 5, 15, 1	3, 9} 4) { 1, 3, 5	7, 9, 11}			
	51) The mean and median	of 5 scores are 8 and	19 respectively. If	the heighest score is		
	increased by 5, then th	e new mean and med	lian are			
	1) 13, 14	2) 13, 9	3) 8, 14	4) 9, 9		
	52) The method drawing e	nlarged or reduced s	imilar figures is ca	lled		
	1) Tessellation					
	3) rotational symetry	4) point symmetry				
1	53) A transformation in wh		reflacted across a	line creating a		
	mirror image of a orig		2) Morro	4) Full rotation		
	1) Flip	2) Rotation	3) Wiove	4) Full Iolation		
	54) We cannot draw a quad					
١	1) S.S.S.S.A	2) S.S.S.A.A	3) S.S.S.D.D	4) S.A.S.A.S		
	55) Which of the following is not a standard angle					
	1) 90°	2) 450	3) 120°	4) 150°		
	56) The quadrilateral which can be drawn with minimum possible number of					
	measurements					
	1) Parallelogram	2) Rhombus	3) Square	4) Rectangle		
	57) A rubber ball is dropped from the top of a 50m tall tower. Every time the ball					
		rebounces only 95% of its previous height. What height would it raise after				
	bouncing on the groun 1) 41	2) 43	cmately: 3) 44	4) 39		
	-) .1	2) 13	3) 11	,, 5,		
	58) The single discount th			nts of 20% and then		
	5% on a particular ma 1) 25%	arked price of an artice 2) 15%	cal: 3) 24%	4) 18%		
	1) 43/0	2) 13/0	3) 47/0	7) 10/0		

59)	The number of letters of English alphabet in l	between P and Z having	g point -
	symmetry, is	21:24	

1)3

2) 4

3) 2

4) 1

60) All the bars in a bar graph have

1) same length

2) same width

3) same area

4) equal value

