CLASS - VIII				
1) A library has an average of 510 visitors on Sunday and 240 on other days. The average number of visitors per day in a Month of 30 days bigining with Sunday is :				
1) 250	2) 276	3) 280	4) 285	
2) If $(a^m)^n = a^{m^n}$ then expressing 'm' interms of 'n', m =				
1) $(n-1)^{\frac{1}{n}}$	2) $\frac{1}{(n)^{n+1}}$	3) $(n)^{\frac{1}{n-1}}$	4) $(n-1)^n$	
3) $x^{-1} = 4^{-1} + 5^{-1}$ then $x =$				
1) $\frac{20}{9}$	2) $\frac{1}{9}$	3) $\frac{9}{20}$	$(4)\frac{11}{9}$	
4) If the mean of x and 1/x is M and mean of y and 1/y is N then mean of x^2 , y^2 , $1/x^2$, $1/y^2$ is :				
1) $M^2 + N^2 - 1$	2) $M^2 - N^2 + 1$	3) M ² - N ² - 1	4) M ² - N +3	
5) The figure that can be dra 1) Square	awn when only two dia 2) Rhombus	ngonals are given 3) Rectangle	4) 1 and 2	
6) If the mean of a, b, c is (1) x ²	x' and $ab + bc + ca = 0$ 2) $3x^2$	0 then mean of a^2 , b^2 , 3) 6 x^2	c ² is: 4) 9x ²	
7) What is the difference in the areas of a Square and a Rhombus, where as the diagonals of Rhombus are 8cm and 6cm; the Square has the same side as that of Rhombus				
1) 4sq.cm	2) 3 sq.cm	3) 2 sq.cm	4) 1 sq.cm	
8) Less than Ogive is a 1) Straight line	2) Falling curve	3) Raising curve	4) Polygon	
-)	-)	S) ruising our to	4) I Olygon	
9) $\sqrt{1 + \frac{55}{729}} = 1 + \frac{x}{27}$ then $x = \dots$				
1) 1	2) 3	3) 5	4) 7	
10) If $(a+b) : (b+c) : (c+a)=6:7:8$ and $(a+b+c) = 14$ then $c =1) 6 2) 7 3) 8 4) 9$				

2

Class VIII

A.I.M.Ed Maths Scho	larship Eligibility Te	est-2018	Class VIII
11) If $2^x = 3^y = 6^{-z}$ the	$\exp\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \dots$	by soling 1 wild	sopi of it encode noticing a relie mission biological context
1) 1	2) 0	3) $-\frac{1}{2}$	4) $\frac{3}{2}$
12) Author of the fame 1) George Can 3) George Poly	ous book 'How to a itor ya	Solve It' is 2) Rubrik 4) Kaprekar	1) Part of first of court
13) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32}$	<u>-</u> +=		
1) 4	2) 2	$3) > \frac{3}{2}$	4) Can not be determined
 14) A. The sides 4cm, 4cm, and 9 cm form an isosceles triangle. B. The sides 4cm, 5cm and 3 cm form a right angle triangle. Then the truth statement : A only B only B only 			
15) "Between two rates numbers" - This1) Reflexive p3) Transitive	ional numbers, the is called : roperty	ere will be infinite 2) Symmetric 4) Density prop	e number of rational
16) $0.\overline{2} + 0.\overline{3} + 0.\overline{4} = \dots$			
1) 0.09	2) 9/10	3) 1	4) 0.09
17) If the mean of 'n' observations $2x_1$ 1) $2x$ 2	observations x_1, x_1 +3, $2x_2$ +3, $2x_3$ +3, 2) $2x$ +3	$x_{2}, x_{3},, x_{n} is \overline{x}, ,$ $x_{n} is \overline{x},, 2x_{n} + 3 is$ $x_{n} + 3 is$	then the mean of 'n'
 18) A man driving a moped at 42 kmph reaches his destination 5 minutes late to an appointment. If he had driven at 60kmph he would have reached the place 4 minutes before time. If he starts at 9 A.M. what is the correct time he has to reach the place? 1) 9 30 A M 2) 9 25 A M 3) 9 21 A M 4) 9 45 A M 			
1) 9.30A.WI.	2) 9.23A.W	1. 3)9.21	A.IVI. 4) 7.43 A.IVI.
19) The sum of 9 consecutive whole numbers is 99, then the largest number of these whole numbers is			
1) 15	2) 17	3) 19	4) 21

Class VIII

20) A person incurs 5% loss by selling a watch forRs.1140. At what price should the			
1) 1260	2) 1250	Rs.) 3)1320	4) 1280
21) Range of first 'n' even natural numbers is			
1) $2n+2$	2) 2n - 2	3) n - 2	4) n - 1
22) The cube root of the	reciprocal of 27	² is	
1) $\frac{1}{6}$	2) 6	3) $\frac{1}{9}$	4) $\frac{1}{27}$
23) The square root of	$41 - \sqrt{21 + \sqrt{19 - 100}}$		
1) 6	2) 9	3) 30	4) 36
24) The third proportion for $(a^2 - b^2)$ and $(a + b)$ is			
1) a - b	2) a + b	3) $a^2 + b^2$	$4) \ \frac{a+b}{a-b}$
25) Number of diagonals in a n-sided polygon			
1) $\frac{n(n-1)}{2}$	2) $\frac{n(n+1)}{2}$	3) $\frac{n(n-3)}{2}$	4) $\frac{n(n+3)}{2}$
 26) The decimal representation of rational number is in the form of A. terminating decimal B. non-terminating decimal C. Recurring decimal then the truth statements are 1) A or B 2) B or C 3) A or (B and C) 4) A and (B or C) 			
27) There are 60 multiple choice questions in this test. Two marks are awarded for each correct answer and one mark is deducted for every wrong answer. If a student got 45 marks after answering all the questions then the number of correct answers in the paper is			
1) 40	2) 45	3) 35	4) 30
28) If $a = \frac{1}{b}$, $b = \frac{1}{c}$ and $c = \frac{7}{5}$ then (a x b) x c is			
1) $\frac{5}{7}$	2) $\frac{7}{5}$	3) $\frac{49}{25}$	4) $\frac{25}{49}$

			The second s
29) If S, A and D respective a Quadrilateral, the quadrilateral is not	ctively represent f in with the usual i	one side', 'one angle notation of symbols,	e' and 'one diagonal' of construction of
1) S.S.S.S.A	2) S.S.S.S.D) 3) S.A.S.D	A 4) S.A.S.A.S
30) A square field with	-id- 20 :	Section of sectors of the	
of the path is 256 se	g.m. then width o	unded by a path of un of the path is	niform width. The area
1) 4m	2) 3m	3) 2m	4) 1m
31) Mode of 'n' natura	l numbers		
1) 0 2)	(n/2)th term	3) $(n+1)/2$ th term	4) Doesn't exist
p = p = r = t			
32) If $\frac{1}{q} = \frac{1}{s} = \frac{1}{u} \neq \dots$	price, there is a		
1) a prt	p + r + t	3n - 2r + t	2 2 2
1) $\sqrt[3]{q_{su}}$ 2)	$\overline{q+s+u}$	3) $\frac{3p-2s+u}{3q-2s+u}$	4) $\frac{p^2 + r^2 + r^2}{q^2 + s^2 + u^2}$
22) 1			
1) Golden Patio	ation to the ratio	1.615 : 1 is known a	IS
3) Kaprekar ratio		2) Fibonacci ratio	e al altaro
	A fe man	4) Ratio in proport	10n
34) If a^m . $a^n = a^{mn}$ then m	n(n-2) + n(m-2)) =	
1) 0	2) 1	3) -1	4) <u>1</u>
2.5) (71)		and the second second	·/ 2
1) 2	in the series 2,	9, 28, 65, 126, 216, 3	344 is
ngor paralle 2 (le	2) 28	3) 126	4) 216
36) Which of the follow	ving is true?		
1) Cube of an ev	en number is an c	odd number	
2) The cube of a	two-digit numbe	r may be a three digi	tnumber
4) There is no ne	gle digit number i	may be a single digit	number
1) There is no pe	freet cube which	ends with 8	
37) The possible numbe	r of bold type Eng	glish Alphabets(Capi	ital) which have point
symmetry:	2) 5		, and have point
h What is the length of	2) 5	3) 6	4) 2

A.I.M.Ed Maths Scholarship Eligibility Test-2018 38) If the perimeter of an isosceles right triangle is $(6 + 3\sqrt{2})$ m, then area of the triangle: 4)5 sq.m 3) 9 sq.m 2) 5.4 sq.m 1) 4.5 sq.m 39) The ratio of the area of a square to that of the square drawn on its diagonal is 3) 1 : 2 4) 3:5 2) 2:5 1) 3 : 4 40) A student attempted to draw a quadrilateral PLAY given that PL=3cm, LA=4cm, AY=4.5cm, PY=2cm and LY=6cm. But he was not able to draw. The best reason 2) YL-YA<AY 1)AL+AY>LY 3) PL + PY < YL 4) At least one angle has to be given 41) By selling an article at 2/5 of the marked price, there is a loss of 25%. The ratio of the the marked price and the cost price is 4) 15:8 3) 8:15 1)2:52)5:242) From the adjecent figure the ratio of the areas of the inscribed circle to the circumscribed circle is 2) 1 : 3 1)1:2 3) 2:3 4)3:443) A rational number between -5 and +3 is $3)\sqrt{13}$ $4)\sqrt{14}$ 1) $\sqrt{4}$ 2) $\sqrt{12}$ 44) The ratio of the length of parallel sides of a trapezium is 4:3 and the distance between them is 8 cm and the area is 42 sq.cm then the longer parallel side is (in cm.) 2) 4.5 3) 7.5 1)4 45) The mean of 'n' observations is x. By an error one observation is registered as 'a' instead of 'b' then the correct mean is : 1) $(n\bar{x}+a-b)/n$ 2) $(n\bar{x}-a+b)/n-1$ 3) $(n\overline{x}-a-b)/n-1$ 4) $[n\overline{x}-(a-b)]/n$ 46) A quadrilateral of area 104cm² has one of its diagonal of length 16cm. and length of one of the perpendicular on it from vertex equal to 9cm. What is the length of the perpendicular from opposite vertex (in cm.)? 1) 6 2)43) 8 4) 12

6

Class VIII

Class VIII

47) $1^3 + 2^3 + 3^3 + 4^3 + \dots + 12^3 =$ 1) $(6 \times 13)^2$ 2) $(4 \times 12)^2$ 3) $(6 \times 12\times 13)$ 48) $a \neq b \neq c \neq d$ are four +ve integers such that $a^3 + b^3 = c^3 + d^3$, the is equal to 1) 6174 2) 1729 3) 1887 49) If 50% of $(a - b) = 30$ % of $(a + b)$, then what % of 'a' is 'b'? 1) 20% 2) 25% 3) 15% 50) If $2^a \times 3^b = 576$ then $\frac{a}{b}$ is 1) 2 2) 3 3) $\frac{1}{2}$ 51) Howmany articles were sold? A) Total profit earned was Rs. 1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3)B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded	 4) (12 x 13)² en each of the sum 4) 1972 4) 40% 4) ¹/₃ 			
1) $(6 \ge 13)^2$ 2) $(4 \ge 12)^2$ 3) $(6 \ge 12 \ge 13)$ 48) $a \ne b \ne c \ne d$ are four +ve integers such that $a^3 + b^3 = c^3 + d^3$, the is equal to 1) 6174 2) 1729 3) 1887 49) If 50% of $(a - b) = 30$ % of $(a + b)$, then what % of a^* is b^* ? 1) 20% 2) 25% 3) 15% 50) If $2^a \ge 376$ then $\frac{a}{b}$ is 1) 2 2) 3 3) $\frac{1}{2}$ 51) Howmany articles were sold? A) Total profit earned was Rs. 1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3) B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded	 4) (12 x 13)² en each of the sum 4) 1972 4) 40% 4) ¹/₃ 			
 48) a≠b≠c≠d are four +ve integers such that a³ + b³ = c³ + d³, the is equal to 1) 6174 2) 1729 3) 1887 49) If 50% of (a - b) = 30 % of (a + b), then what % of 'a' is 'b'? 20% 2) 25% 3) 15% 50) If 2^ax3^b=576 then ^a/_b is 2) 3 3) ¹/₂ 51) Howmany articles were sold? A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed Any two of the three A and B only B and C only All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded 	en each of the sum 4) 1972 4) 40% 4) $\frac{1}{3}$			
1) 6174 2) 1729 3) 1887 49) If 50% of $(a - b) = 30$ % of $(a + b)$, then what % of 'a' is 'b'? 1) 20% 2) 25% 3) 15% 50) If $2^a x 3^b = 576$ then $\frac{a}{b}$ is 1) 2 2) 3 3) $\frac{1}{2}$ 51) Howmany articles were sold? A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3)B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded	 4) 1972 4) 40% 4) ¹/₃ 			
 49) If 50% of (a - b) = 30 % of (a + b), then what % of 'a' is 'b'? 1) 20% 2) 25% 3) 15% 50) If 2^ax3^b=576 then a/b is 1) 2 2) 3 3) 1/2 51) Howmany articles were sold? A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3)B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded 	 4) 40% 4) ¹/₃ 			
 1) 20% 2) 25% 3) 15% 50) If 2^ax3^b=576 then ^a/_b is 1) 2 2) 3 3) ¹/₂ 51) Howmany articles were sold? A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3)B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded 	 4) 40% 4) ¹/₃ 			
 50) If 2^ax3^b=576 then ^a/_b is 1) 2 2) 3 3) ¹/₂ 51) Howmany articles were sold? A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3)B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded 	4) $\frac{1}{3}$			
 1) 2 2) 3 3) ¹/₂ 51) Howmany articles were sold? A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3)B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded 	4) ¹ / ₃			
 1) 2 2) 3 3) ¹/₂ 51) Howmany articles were sold? A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3)B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded 	4) $\frac{1}{3}$			
 51) Howmany articles were sold? A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed 1) Any two of the three 2) A and B only 3)B and C only 4) All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, COR and DRS are sectors. Area of the shaded 				
 A) Total profit earned was Rs.1596 B) Cost price per article was Rs 632 C) Selling price per article was Rs. 765 To get the answer, the statements needed Any two of the three And B only B and C only All A, B and C 52) ABCD is a square of side 14cm. P, Q, R, S are the mid points of AB, BC, CD, DA. APS, BPQ, CQR and DRS are sectors. Area of the shaded region is 1965q.cm 154sq.cm 2154sq.cm 53) A sum of money amounts to Rs. 6690 after 3 years and to Rs. 10,035 after 6 years on Compound interest. Then the sum is (in Rs.) 4,500 4,460 6,400 4) 4,600 54) The method of drawing enlarged or reduced similar figures is called 1) Tessellation 2) Symmetry 3) Dialation 4) Order of symmetry 				

A.I.M.Ed Maths Scholarship Eligibility Test-2018 Class VIII

 55) If the perimeter of a rectangle and a square, each is equal to 80 cm and the difference of their areas is 100 sq.cm, then sides of the rectangle are 1) 25cm, 15cm 2) 28cm, 12cm 3) 30cm, 10cm 4)35cm, 15cm 			
56) Rs 1210 were divided among A,B,C so	that A:B=5:4 and B:C	2=9:10, then C	
gets 1) Rs. 340 2) Rs.400	3) Rs.450	4) Rs.475	
57) Find the number that differs with other1) 52) 50	s 1, 5, 14, 30, 50, 55 3) 55	5, 91. 4) 91	
58) The sides of Eternal triangle are $1)m^2 - n^2$, 2mn, $m^2 + n^2$	2) m - n, m ² - n	2) m - n, m ² - n ² , m + n	
3) m + n, $2\sqrt{mn}$, m - n	(b) $m + n, 2\sqrt{mn}, m - n$ (c) $\frac{m}{n}, mn, m + n$		
59) If 15.732 is expressed in the form of p 1) 14855 2) 14785	/q then p - q = 3)14585	4) 13685	
60) Solution for $\frac{5x+2}{2x+3} = \frac{12}{7}$ is 1) 4 2) 2	3) 0	4) -1	
A THE PROPERTY	AB, BC, CD, DA, AP AB, BC, CD, DA, AP c sector United of the		
te et a miler figures is called 3 r Dialâtion (17 a) Oldana		All The method of distribution of the second of the second	