CLASS-IX

- 1) Number of prime numbers between 1 and 100 is $n^2 + 9$ then $n^2 n + 1 =$ ____
 - 1) 12
- 2)13

3) 11

- 2) $(a+b-c)^2 + (a-b+c)^2 + (a+b+c)^2 + (a-b-c)^2 = k(pa^2+qb^2+rc^2)$ then k-p+q-r=1) 4 2) 5

3)0

- 4) 3
- 3) Who was the first mathematician to unify Algebra and geometry
 - 1) Hipparcus
- 2) R.A.Fisher
- 3) Newton
- 4) Descartes

- 4) $\sqrt{3\sqrt{3\sqrt{3\sqrt{.......\infty}}}} = x$ then $x^2 3x + 6 =$
- 1) 6 2) 3 3) -2
- 4) 9

- 6) Legs of a right Δ are 6 and 8. Then the altitude length drawn from vertex to its hypotenuse must be
 - 1) 2.4
- 2) 4.8
- 3) 6.2

- 4) 8.2
- 7) Evidence of circle drawing instruments at an earliest date is found in excavation at
 - 1) Harappa
- 2) Greece
- 3) Egypt
- 4) Chaina
- 8) "Every even number grater than 4 can be written as sum of two primes" is a conjecture stated by
 - 1) Euclid
- 2) Goldbach 3) Proclus
- 4) John Play Fair

- 9) $\sqrt[3]{x^2} = \sqrt[4]{x^3}$; x > 0 then $\sqrt[5]{32x^2} =$ ____ 1) 5 2) 2

- 4) 6
- 10) A and B are complementary angles $(A \neq B)$ B and C are suplementary angles; C and D are adjecent angles then the true statement is
 - 1)B=C
- 2)A=D
- 4) B = D

- 11) Centre of circle passing through (5, 2), $(0, \sqrt{29})$, (2, -5) is _
 - 1)(0,0)
- 2) (4, 5)
- 3) (1, 2)
- 4)(0, -8)
- 12) P, O, Q are respectively three points on a line. OS is a ray and OR, OT are angle bisectors of |POS| and |SOQ| respectively, then |ROT| =
 - 1) 600
- 2) 900
- 3) 450

- 4) 800
- 13) $\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{5}\right)...\left(1+\frac{1}{30}\right) =$
 - 1) lies between 10 and 11
- 2) lies between 8 and 9
- 3) lies between 14 and 15
- 4) lies between 7 and 7.5
- 14) $4x^2 + 5y^2 = 11$, $5x^2 + 4y^2 = 16$ then $\frac{(\sqrt{3} y)(\sqrt{3} + y)}{x^2} = 16$ 2) 3 4) 11 1) 1
- 15) $x\sqrt{2} + y\sqrt{3} + z\sqrt{5} = 0$ then 2x 3y + 4z =______(Where x, y, z are integers) 3) 0 4) Any integer 2) 9 1)7
- 16) LCM of three positive integers which are in the ratio 5:4:3 is 2400. Then their HCF =
 - 1) 40
- 2) 60

3) 50

4) 10

- 17) Vertex angle of a golden triangle
 - 1) 450
- 2) 36° 3) 72° 4) 60°
- 18) An operation \oplus is defined by $a \oplus b = 2a + 3b 1$

(e.g
$$2 \oplus 3 = 4 + 9 - 1 = 12$$
, $1 \oplus 5 = 2 + 15 - 1 = 16$) then $a \oplus e = 5$ and $2a \oplus e = 7$

- $\Rightarrow 5a \oplus 1 =$ 1) 12
- 2) 13

3)0

- 4) 8
- 19) In a triangle ABC, side AC has been produce to D so that $|BCD| = 145^{\circ}$. If
 - |A:|B=3:2 then |B=
 - 1) 87°
- $2) 36^{\circ}$
- 3) 58°
- 4) 66°
- 20) $x^2 y^2 = 18$; $x > y \& x, y \in N$ then No. of solutions (x, y) is ____
 - 1)2
- 2) 0

3) 5

21) Number of odd as well as square numbers between 1 and 1000 is x. Then

 $x^2 + x - 1 =$ ____ 1) 239

2) 178

3) 197

4) 301

22) ABC is a given triangle. DEF is another triangle formed by its mid points. Then

 $\Delta DEF + \Delta ABC$ $\Delta DEF =$ $\triangle ABC$

1) 4.25 2) 3.75

3) 1.75

4) 2

23) $3^a 2^b 5^c = 750$; $a, b, c \in N$ then $3^c 2^a 5^b = 1$

1) 360

2) 270

3) 256

4) 175

24) $a+b+c=0 \Rightarrow \frac{abc}{a^3+b^3+c^3} = x$ then

1) $0 < x < \frac{1}{2}$ 2) $1 < x < \frac{4}{3}$ 3) $2 < x < \frac{20}{7}$ 4) $1 < x^2 < 2$

25) In a particular case if CASE = 5231; CHAIR = 58206; TEACH = 71258 then 586037 =

1) CHASTE

2) CHRIST

3) STREET

4) CHEASE

26) 3x-4y+7=0 is satisfied by (2a, 3a-1) then 12a-20=

1)8

2) 2

3) 7

4) 0

27) Remainder when $x^2(x^2+1)+1$ is divided by 1+x(1+x) is Ax^2+Bx+C then A - B + C = $\frac{}{2) 1}$

3) 0 4) 3

28) Least value of $\frac{(5^{x}+5^{-x})^{2}}{4}$ is _____

1) 4 2) 1

3) 0

29) There are 20 spokes in a cycle wheel with length of the spoke 35cm. The length of the maximum curved space between 1st and 7th spokes iscm

1)66

2) 77

3) 55

30) Number of real soultions of $(a-1)^{1/2} + (1-a)^{1/2} = 7$ is x, then

$$\sqrt{5x+4} + \sqrt{4-5x} =$$

- 1)4
- 2) 0

3) 1

- 4) 9
- 31) $(a-b)x^2 + (b-c)x + (c-a) = 0$ has equal roots then ____ (where $a \neq b \neq c$)

- 1) $b = \frac{a+c}{2}$ 2) $a = \frac{b+c}{2}$ 3) $c = \frac{a+b}{2}$ 4) $\frac{2a}{1} = \frac{b}{5} = \frac{c}{3}$
- 32) A rectangle of dimensions l and b satisfying $x^2 7x + 12 = 0$ is inscribed in a circle of area
 - 1) 1.25π
- 2) 3.75π
- 3) 5π

4) 6.25π

- 33) If $a + \frac{1}{b+1} = \frac{59}{7}$ then $(a-b-c)^3 =$
- 1) 8 2) 64 3) 10

- 4) 27

- 35) Missing term in the sequence $\frac{1}{2}$, $\frac{4}{9}$, $\frac{9}{28}$, $\frac{25}{126}$
 - 1) $\frac{13}{65}$
- 2) $\frac{16}{65}$ 3) $\frac{18}{73}$
- 4) $\frac{14}{38}$
- 36) A real number is equal to cube of itself. The sum of all such numbers is
 - 1)8

- 4) 6
- 37) $x = 2 + \sqrt{3} \Rightarrow x^4 + x^{-4} = a$ Then sum of digits of 'a' is ____
 - 1) 14
- 2) 5

3) 18

- 38) Arithmetic mean of set of a data of 1200 numbers is 17. If 2 is added to every number, their new mean is X. Then the product of digits of X must be
 - 1)3
- 2) 14

3)9

- 4) 12
- 39) PQRS is a rectangle. T is mid point of PS. W is mid point of RT. Area of rectangle PQRS is 120cm^2 . Then area of $\Delta QSW =$
 - 1) 10
- 2) 15

3) 40

1) 1/2

2) $\frac{2}{3}$

40) If $a^2 - 8a + 1 = 0$ then $\frac{1}{4} \left(a + \frac{1}{a} \right) =$						
1) 2		3) 8	4) 4			
41) $\frac{1}{2\times3} + \frac{1}{3\times4} + \frac{1}{4\times5} + \frac{1}{5\times6} + \dots + \frac{1}{99\times100} =$						
1) 0.28	×5 5×6 2) 0.25	99×100 3) 0.49	4) 0.57			
42) p, q, r, s are four different numbers such that $p^3 + q^3 = r^3 + s^3$ then the value of						
p+q+r+s is 1) 19		3) 32	4) 23			
43) Two sides of a scalene triangle are connected by $x^2 - 8x + 15 = 0$. Then number of						
1) 2	ne triangles form 2) 3	3) 4	4) 5			
44) The average of 5 consecutive odd numbers is 61. What is the difference between the highest and lowest numbers.						
1) 2		3) 8	4) 7			
45) $i = \sqrt{-1}$ symbol was introduced by						
1) C.F.Gauss	2) Ramanujan	3) Pascal	4) Newton			
46) Number of numbers either divisible by 3 or by 5 in first 200 naturals is 1) 93						
and a street	2) 87	3) 108	4) 68			
1) (1, 7)	c = 0 passes throug 2) (2, 5)	th the point (1, 3). The 3) (-2, 4)	en it also passes through 4) (8, 2)			
48) Co-ordinate Geometry was invented by						
1) Kene Desca	urte 2) SL. Loney	3) Pythagorus	4) Euclid			
49) In a parallelogram M is the midpoint of AB and DM intersect AC at X						
AX						

3) 2/5

6

4) 3/5

	V A CONTRACTOR OF THE PARTY OF					
50) ABCD is a quadrilate	eral. AC is one diag	gonal. If $ \underline{A} = 117^{\circ}$, $ \underline{B} = 117^{\circ}$	$90^{\circ}, \underline{BCA} = (3Y + 5)^{\circ}$			
and $ \underline{CAD} = 65^{\circ}$ then	$\underline{y} = \dots$					
1) 120	2) 110	3) 20°	4) 150			
51) Number of parallelograms formed when 4 parallel lines are cut by another set of three parallel lines is						
	2) 12	3) 24	4) 36			
52) The diagonal of a rectangular field is 100m. length and breadth are in the ratio of 3:4 then its area issq.m						
1) 1400	2) 4800	3) 6400	4) 8400			
53) In a parallelogram ABCD the angular bisectors of $ \underline{A} $ and $ \underline{B} $ are intersecting at P						
then $ \underline{APB} = \dots$ 1) 30°	2) 450	3) 60°	4) 90°			
54) The angular bisector 1)Parallelogram		n forms	4) Square			
55) If the diagonal of a square is 'd' units, then the diagonal of the square whose area is double that of the first square is						
1) 2d	2) √2 <i>d</i>	3) d ²	4) $\frac{d^2}{2}$			
56) The ratio of monthly incomes of Anand and Mohan is 9: 10 and ratio of their monthly savings is 9: 10. If the monthly expenditure of Mohan is Rs.15000; Monthly expenditure of Anand is Rs.						
1) 12000	2) 9000	3) 8500	4) 13500			
57) The number of sides of a regular polygon if $\frac{x}{y} = \frac{2}{5}$ where 'x' is the exterior angle						
and 'y' is the corresponding interior angle of the polygon is						
1) 5	2) 7	3) 6	4) 8			
58) The mean of first 'n' natural numbers is $\frac{5n}{9}$, then 'n' =						
1) 4	2) 5	3) 9	4)(10)			

151

4) 60 runs

59) The mean of 13 of and that of the last 1) 12	observations is 14. If the st 7 observations is 16 the 2) 13	e mean of the first 7 nen the value of 7 th of 3) 14	observations is 12 bservation is 4) 15
secredios luns, un	certain average for 10 in tereby increasing his av	nnings. In the elevent erage by 6 runs. His	h inning, he new average is
1)48 runs	2) 52 runs	3) 55 mms	1) 60

3) 55 runs

2) 52 runs

