CLASS - IX						
1. $(x-1)(x-2)(x-3)(x-4) = ax^4 + bx^3 + cx^2 + dx + e$ the $a - b + c - d + e = $						
	4) -160					
	4)-100					
2. In a right triangle sides are 3: 4: 5 and perimeter is 50. Then area is						
1) 420 2) $\frac{625}{6}$ 3) 270	4) 100					
6	4)100					
3. If $r^2 - 1 - v^2$ then $(3r - 4r^3)^2 + (4v^3 - 3v)^2 - 4v^3 + (4v^3 - 3v)^2 + (4v^3 - 3v^3 + 3v^3 + (4v^3 - 3v)^2 + (4v^3 - 3v^3 + 3v^3 + (4v^3 - 3v^3 + 3v$						
3. If $x^2 = 1 - y^2$ then $(3x - 4x^3)^2 + (4y^3 - 3y)^2 =1) 4 $	4) 1					
	.) 1					
4. Number of triangles with integer sides and whose two sides are 6 and 4 is						
1) 7 2) 6 3) 1	4) Infinite					
5. A rhombus has diagonals in ratio 1: 2 and its permieter is $60\sqrt{5}$. Then its are	ea is					
	4) 300					
	.) 2 0 0					
6. An equilateral triangle has its side satisfying $x^2 + x - 12 = 0$. Its area is						
3,/3	$9\sqrt{3}$					
1) $\sqrt{48}$ 2) $\sqrt{32}$ 3) $\frac{3\sqrt{3}}{4}$	4) $\frac{9\sqrt{3}}{4}$					
7. A square of side 4cm can be inscribed in a circle of area						
1) 3π 2) 4π 3) 8π	4) 6 <i>π</i>					
8. $x + y\sqrt{2} + z\sqrt{3} = 0$; x, y, z \in Integers. Then 2x-y+2016z =	8. $x + y\sqrt{2} + z\sqrt{3} = 0$; x, y, z \in Integers. Then 2x-y+2016z =					
1) 0 2) 2013 3) 2017 4)	Any integer					
9. Four lines in a plane may intrersect in almost						
1) 6 points 2) 1 points 3) 4 points						
4) Infinite number of points						
10. A square is of side 10cm. 4 equal squares of diagnoal $\sqrt{2}$ each are cutout from each						
corner. Remaining edges are folded to make a solid of square base. Its voulme is cm^3						
1) 32 2) 84 3) 64	4) 240					

Class	IX
-------	----

11. Mean of 5, 27, x, 40, 25, 13 is $\frac{x}{2}$. then mean of x and 45 divides					
1) 100)	2) 80		3) 110	4) 68
12. Number of positive integer pairs (x,y) satisfying $3x+4y=12$ is					
1) 1		2) 0		3) 2	4) Infinite
$13. x^2 + y^2 - 2$	2x - 2y + 2 = 0 =	$\Rightarrow 2x - 3$	3y =		
1) -1				3) +2	4) -3
14	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		2		
14. $x = 2 + \sqrt{2}$	$\overline{3}, y - \frac{1}{x} = 0$ then	nx + y	=		
1) 12		2) 8		3)14	4) 4+2 $\sqrt{3}$
15. The mathe	matician who fi	rst calcu	lated the value c	of π to first 4 decim	alplaces
1) Gau			abhata	3) Bhaskara	4) Renedescarte
16. 14th March of every year is mathematically important because it is 1) π day 2) Eulerday					
	wtonday				
17. Which yea	r is declared as r	national	mathematical ye	ear by the Indian Go	overnment
1) 201	1	2) 201	2	3) 2000	4) 2010
18. Golden tria	angle is a triangle	ewith			
1) ang	les $60^{\circ}, 30^{\circ}, 90^{\circ}$)	2) angles 45° ,	$45^{\circ},90^{\circ}$	
3) ang	gles $72^{\circ}, 72^{\circ}, 36$	0	4) sides 1, 2,	$\sqrt{3}$	
-	man who create took the shape of	-		uilateral triangle int	to 4 parts, when
-	vid Hilbert		2) Henry Earn 4) Pascal	est Dudency	
20. The series	formed by mis	sing lett	ers in the series	-bcbb-aab	c
1) a c	-	2) b a		3) a b a b	4) a a c c

A.I.M.Ed Maths Scholarship	Class IX				
21. In the series 52, 51, 48, 43, 34, 27, 16, one number is wrongly placed. Find it					
1) 51	2) 48	3) 34	4) 43		
22. What comes next in the fo	llowing letter series WT	TPMIFB_?			
1) X	2) D	3) F	4) Y		
23. ENTRY is coded as 1234	5 and STEADY is code	ed as 931785, then the c	orrect code for		
the word "NEATNESS"					
1) 25196577	2) 21732199	3) 21362199	4) 21371299		
24. If ANT = H, PIG = E, the					
1) I	2) C	3) D	4) G		
25. If BIG is coded as YRT at	nd CAT is coded as XZ	G then FOX is			
1) ULC	2) VMC	3) YAL	4) WNC		
26. The figure formed by join		and (2,0) is			
1) Quadrilateral	2) Parallelogram	3) Rectangle	4) Square		
27. $\sqrt{7-2\sqrt{10}} =$					
1) [7] [7]	2) \overline{a} \overline{b}	$2) \int \overline{-} \int \overline{-} \overline{-} \overline{-} \overline{-} \overline{-} \overline{-} \overline{-} \overline{-}$	4) $\sqrt{7-\sqrt{5}}$		
$1) \sqrt{5} - \sqrt{2}$	2) $\sqrt{2} - \sqrt{5}$	3) $\sqrt{7} - \sqrt{10}$	4) $\sqrt{7} - \sqrt{5}$		
28. The AM of n observations	s is M. If the sum of (n-4	4) observation is a, then t	he mean of		
remaining observations is					
	nM-a	nM + a	nM-a		
1) $nM + a$	2) $\frac{nM-a}{2}$	3) $\frac{nM+a}{2}$	4) $\frac{nM-a}{4}$		
	2	2	4		
$ _{20, 10} r^2 - \frac{1}{1-15} r^2 - \frac{1}{1-15} r^2$	1 - 1 - 15 1 - 15				
$\ 29.11^{-x} + x^2 - 4^{-1} \ $ then the	29. If $x^2 - \frac{1}{x^2} = \frac{15}{4}$ then the value of $x + \frac{1}{x} =$				
		_			
1) $\frac{5}{2}$	2) $\frac{7}{2}$	3) $\frac{\sqrt{15}}{2}$	4) $\frac{7}{4}$		
2	²) 2	$\frac{3}{2}$	4 4		
30. $2x^2 + 5y^2 + 45z^2 - 4xy - 6yz - 12zx = 0$ then $x: y: z =$					
1) 1 : 2 : 3	2) 2 : 3 : 6	3) 1 : 3 : 6	4) 6 : 3 : 1		

31. The average of 7 observations is 17. If two observations 21 and 31 were misprint as 27 and 18 respectively then the correct mean is 2) 17 3) 18 4) 19 1)16 32. $N = \frac{p}{q}$, $p,q \in \mathbb{Z}$ $q \neq 0$ and N is a terminating decimal then the form of q is 1) only $2^m, m \in z$ 2) only $5^m, m \in z$ 3) $2^m \text{ or } 5^n$ or both 2^m and 5^n , $m, n \in \mathbb{Z}$ 4) both 2^m and 5^n , where $m, n \in Rational$ 33. The number of ordered pairs (a,b) such that the zero of the polynomial ax - b = 3 is 1) Infinity 2) 3 3)1 4) None 34. Let $p(x) = x^{\frac{2m}{3}} + x^2 + x^3 + x^8 + x^{10} + x^{12}$ is a polynomial of degree 12 then the possible value of M are 1) {3, 6, 9, 12, 15, 18}2) {1, 2, 3, ...12}3) {3, 4, 5, 6 ...18}4) {1, 2, 3 ...18} 35. $\frac{72m}{2016}$ is a terminating decimal then the least value of m is _____ 2)7 3) 2 4) 8 1) 5 36. $(2016)^3 + (2017)^3 - (4033)^3 =$ 1) -2016 x 6051 x 4033 2) 2016 x 6051 x 4033 3) 2016 x 2017 x 4033 4) 6048 x 2017 x 4033 37. In the adjoining figure BD and CD are bisector of ABC and ACE respectively and $|BAC = 54^{\circ}$ then |BDC =2) 27° 1) 54° 3) 36° 4) 32°

A.I.M.Ed Maths Scholarship Eligibility Test-2016
--

Class IX

38. In fig. $ \underline{BAC} = 66^\circ \underline{OBC} = \frac{1}{3} \underline{DBC}$					
and $ \underline{OCB} = \frac{1}{3} \underline{ECB} $. Then $ \underline{BOC} =$					
-	2) 98°		7		
3) 100°	4) 57 ⁰				
39. In fig. AD = DC= BD then	ABC =	\sim			
1) 90°	$\overline{2)}_{60}^{0}$		D		
3) 80°	4) 70°		×		
40. If 79A5863B is divisible by	x 88 then the (A B)		C		
	(2)(2,4)	3) (4,4)	4) (4,2)		
41. XYY x 999 = XYZ123 th 1) 23	en $X + Y + Z$ 2) 21	3) 27	4) 19		
42. Altars in anciant India are some of the best application of1) Geometry2) Arithmetical Calculations3) Constructions4) Time measurements.					
43. The dimension of a point is					
1) 1	2) 0	3) 2	4) infinite		
44.The term used by Euclid for 1) Ray	' a line segment' 2) dotted segment	3) terminated line	4) part of line		
 45. Euclid's fifth postulate deals with 1) paralles lines 2) Right angles 3) perpendicular lines 4) Lines passing through points 					
46. In this figure the angles x and y are in the ratio 3: 2 and angle z is equal to the difference of y					
and 4 times x, then $y =$					
1) 54°	2) 36 [°]		/		
3) 24 ⁰	4) 48°	A O	→ B		

A.I.M.Ed Maths Scholarship Eligibility Test-2016						
47. In $\triangle ABC$, the internal angle bisectors of $ B $ and $ C $ are meeting at O. If						
$\underline{A} = 50^{\circ}$. Then \underline{BOC}	2 =					
1) 110°	2) 130°	3) 125°	4) 115°			
48. If the point (-x, y) is in Q_3 then (x, -y) is in						
1) Q_1	2) <i>Q</i> ₂					
3) <i>Q</i> ₄	4) on x- axis					
49. A circle has centre (cumference is			
1) 10π	2) 3π	3) 4π	4) 5 <i>π</i>			
	brigin is of the form $y = 1$ 2) $a + bm = 0$ on for measurement, if F	3) b + am = $($	-			
1) 75°	2) 65°	3) 35 ⁰	4) 45 [°]			
52. ABCD is a rectangle, AC = 8cm. P,Q,R,S are respectively the mid points on the sides of rectanlge. Then the perimeter of the quadrilateral PQRS is 1) 32cm 2) 16cm 3) 24cm 4) insufficient data						
53. ABCD is a parallel	ogram. AP and CQ are p	erpendicualrs drawr	n from vertices A and C			
on diagnol BD,then		2D b) $AP = CQ$				
1) a is true 3) a or b only on	2) b is true 4) both (ue a) & (b) are true				
54. The pair of lines which safisfy the point $(0,2)$						
1) $3x + 2y = 6$,	-	2) $2x + 3y = 6$, $2x - 6$	-			
3) $2x + 3y = 6$,	$2x + y = 2 \qquad 2$	4) $2x - 3y = 6$, $2x - 3y = 6$	y = 2			
55. A rectangular piece of paper 33cm x 6cm is folded without overlapping to make a cylinder to meet the shorter sides together, then its volume to the nearest integer is						
1) $524cm^3$	2) $520cm^3$	3) $480cm^3$	4) $500cm^3$			

56 The maggine of control ton	danar which is affected	by its outrom a values			
56. The measure of central ten 1) Mean	2) Mode	3) Median	4) Range		
57. A metallic sphere of radius 6cm is meleted to form a cylinder of height 24cm. Then diameter of the cylinder is					
1)8cm	2)6cm	3)4cm	4) $4\sqrt{3}$ cm		
58. $\overrightarrow{AB} \parallel \overrightarrow{CD}$ and 1 is a transversal intesecting \overrightarrow{AB} at P and \overrightarrow{DC} at R. The bisectors of the					
interior angles form a 1) Triangle	2) Quadrilateral	3) Parallelogram	4) Rhombus		
59. A distribution may not hav	/e				
1) Mean	2) Median	3) Mode	4) Range		
60. The average marks of boy and 56. The ratio of boys a		ts of a class are respectiv	vely 50, 60		
1) 2 : 5	2) 2 : 3	3) 1 : 4	4) 5 : 6		
[50 Total nu	mber of squares in the fi	oure o		
		-	gure 8		
	1) 9 3) 10	2) 12 4) 14			
	-	•			