Class X

```
Class X
```


10) $|x| + |y| = |x + y| \Rightarrow$ 1) xy = -8 2) xy = -1 3) xy < -8 4) $xy \ge 0$ 11) $x = 7 + 4\sqrt{3}$ then $x^2 + \frac{1}{x^2} =$ _____ 2) 194 1) 243 3) 270 4) 189 12) (x + a)(x + 2) + 1 = 0 has $x, a \in Z$ then sum of possible values of $a = \dots$ 1) 0 2) 2 3) 4 4) 8 13) From first 100 natural numbers one is selected at random. The chance that it is a prime number. 1) 1/2 2) 1/4 3) 2/3 4) 3/4 14) ABCD is any quadrilateral in the co-ordinate plane. Then the quadrilateral formed by its mid points of sides is always. 1) Trapezium 2) Square 3) Parallelogram 4) Scalene quadrilateral 15) The Probability of an event A in general should satisfy 1) $0 < P(A) < \frac{1}{2}$ $2) \quad 0 \le P(A) \le 1$ 3) $0 \le P(A) \le \frac{1}{4}$ 4) $-1 \le P(A) \le 1$ 16) Number of solution pairs (x,y) satisfying the equation $x^{2} + y^{2} + 6x + 4y + 13 = 0$ is _____ 2) 2 1) 1 3) 0 4) Infinite 17) A pair of linear equations $a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$ is said to be inconsistent, if 1) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ 2) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ 3) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ 4) $\frac{a_1}{a_2} \neq \frac{c_1}{c_2}$

26) The 7th term of an A	AP is $\frac{-39}{12}$ and 151	th term is $\frac{-103}{12}$ what	is the 27th term ?
1) $\frac{-187}{12}$	2) $\frac{-191}{12}$	3) $\frac{-199}{12}$	4) $\frac{-205}{12}$
27) The length of the rec its diagonal is 17cm	tangle is less than . Its length and br	twice its breadth by 1 eadth are	cm. The length of
1) 15cm, 8cm	2) 13cm, 4cm	3) 10cm, 6cm	4) 8cm, 9cm
28) If $A = \{1,3,4\}$ and $A = \{1,3,4\}$ following is true	$B = \left\{ x / x \in R \ and \right.$	$x^2 - 7x + 12 = 0$ } then	which of the
1) $A = B$	2) $A \subset B$ 3) $B \subset A$ 4) A is	equivalent to B
29) There are 5 green and replacement. The pr	d 7 red balls.Two obability that first	balls are selected one is green and second i	by one without s red
1) $\frac{37}{132}$	2) $\frac{36}{132}$	3) $\frac{35}{132}$	4) $\frac{132}{35}$
30) The point which lies the points $A(2,5)$ and	s on the perpendic nd B(-2,-5) is :	ular bisector of the lin	e segment joining
1) (0,0)	2) (0,2)	3) (-2,0)	4) (2,0)
31) Who is famously kn	own as Father of S	Statistics?	
1) R.A .FISHER	2) P.C.ROY	3)C.R.RAO	4) B.V.RAO
32) From first 500 natur removed. The numb	cal numbers all mu per of remaining n	ultiples of 5 and all mu umbers is	ultiples of 6 are
1) 278 2)	167	3) 333	4) 222
33) The least degree of a coefficients, two of	a polynomial equa	tion with integer 1 + $\sqrt{2}$ and 2 + $\sqrt{3}$ is	S
1) 6	2) 2	3) 4	4) 8
34) Two straight lines	$\frac{x}{4} + \frac{y}{3} = 2, \frac{x}{2}$	+ y = 5 intersect at the theorem is the second s	the point (α,β) then
$\left(\alpha^2+\beta^2\right)^{\frac{1}{2}}=_$			
1) 5	2) 7	3) 6	4) 12

A.I.M.Ed Maths Scholarship Eligibility Test-2023

35)	Number of Circles tou	ching all the 3 sides of	of the triangle forme	d by x=2 , y=3
	and $x + y = 10$ is 1) 1	2) 2	3) 4	4) 0
36)	A point (3,4) is reflected axis, then x - axis, then reflected about origin the following is true.	ed 2023 times about o y - axis etc. Continu and the resulting poir	co-ordinate axes star ously. Its final posit nt is noted as (a,b). N	ting with y- ion is then ow which of
	1) $a + b = 0$	2) $a + b = 1$	3) ab = 7	4) ab = 12
37)	Natural numbers are di {7,8,9,10} .etc.,Then f	vided in to groups as irst number in 101th	follows. {1}, {2,3}, group will be	{4,5,6},
	1) 7875	2) 5661	3) 5051	4)3750
38)	Which of the following	g point lies necessairly	y with in the triangle	?
	1) Centroid	2) Ortho center	3) Circum center	4) all above
39)	A triangle has vertices is	(0,0), (4,0) and (0,3)	. Then length of its l	ongest median
	1) $\frac{\sqrt{73}}{2}$	2) $\sqrt{13}$	3) $\sqrt{5}$	4)√103
40)	Which of the following $y = ax^2 + bx + c$ whe	equations represent a	a parabola in graph	
	1) a \neq 0, b, c \in R	$2) a = 0, b \neq c \in \mathbb{R}$	(3) a=0, b=c \neq 0 \in R	4) \forall a,b,c \in R
41)	Which of the following	g is a non leap year?		
	1) 2022	2) 2024	3) 2076	4) 2032
42)	The difference of areas is $\sqrt{8}$ is	s of incircle and circu	mcircle of a square	whose diagonal
	1) <i>π</i>	2) 2 <i>π</i>	3) $\pi\sqrt{3}$	4) None
43)	$x^3 + ax^2 + bx + c$ is co	ompletly divisible by	1+x, $2+x$ and $3+$	x then b - $2c =$
	1) 0	2) 6	3) -1	4) -6

A.I.M.Ed Maths Scholarship Eligibility Test-2023

44) For the given dat	a <u>3 Median – Mode</u> <u>Mean</u>	=			
1) 3	2) 2	3) 1	4) 1/2		
45) $(x - 3) (x - 5) (x$	- 7) - $1 = 0$ has roo	ts α , β , γ . Then α^{-1}	$^{1} + \beta^{-1} + \gamma^{-1} = _$		
1) $\frac{-71}{106}$	2) $\frac{21}{53}$	3) $\frac{72}{113}$	4) 1		
46) The father age is will be four times respectively	46) The father age is six times his son's age. After Four years the age of the father will be four times his son's age. The present ages of the son and father are respectively				
1) 4 & 24	2) 5 & 30	3) 6 & 36	4) 3 & 24		
47) The mean of four the range of the o	r numbers is 37. The data is 15, what is th	e mean of the smalles he mean of the largest	t three of them is 34. if three?		
1) 41	2) 38	3) 40	4) 39		
48) The centre of the	e circle passing thro	ugh the points (6,-6),	(3,-7) and (3,3)		
1) (-3,-2)	2) (3,2)	3) (-3,2)	4) (3,-2)		
49) Three consecutiv coordinates of th	re vertices of a paral ne fourth vertex are	lelogram are (1, -2) (:	3, 6) and (5, 10). The		
1) (-3, 2)	2) (2, -3)	3) (3, 2)	4) (-2, -3)		
50) Who gave the fo	rmulae for finding t	he sum of first 100 na	atural numbers?		
1) BHASKAR	RA	2) C.F.GAUSS			
3) BRAHMA	GUPTA	4) EUCLID			
51) In a college 20 professors teach mathematics or physics. If 12 teach maths and 4 teach both physics and maths, how many teach only physics					
1) 10	2) 8	3) 12	4) 15		
52) The lengths of the of the side of the	e diagonals of a rhome rhome rhome signals of a rhome signals are set as the set of the	mbus are 16 cm and 1	2 cm. Then, the length		
1) 9cm	2) 10cm	3) 8cm	4) 20cm		
			7		
			/		

53) If $A = \{3,5,7,9,10\}$, $B = \{7,9, (A \cap B) \cap (B \cup C) = \\ 1)\{7,9,10\}$ 2) $\{3,5,54\}$ A(5, 1) B(1, 5) and C(-3, -1) a AD is 1) $\sqrt{34}$ 2) $\sqrt{35}$ 55) Sum of radii of two concentr of their annulus is(near 1) 88 2) 68 56) A set of 3 parallel lines are cur quadrilaterals of the network 1 1) 16 2) 18 57) A number looks like this 1223 number 1) 2 2) 0 58) Missing term of series $\frac{1}{503}$, $\frac{1}{503}$ where a and b are relatively 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1	$ \frac{10,13}{C} = \{10,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$	15}. Then (15}. Then (15}. Then (15). Then (15). Then (15). Then (16)
$(A \cap B) \cap (B \cup C) =$ 1){7,9,10} 2){3,5} 54) A(5, 1) B(1, 5) and C(-3, -1) a AD is 1) $\sqrt{34}$ 2) $\sqrt{3}$ 55) Sum of radii of two concentr of their annulus is(near 1) 88 2) 68 56) A set of 3 parallel lines are cur quadrilaterals of the network 1) 16 2) 18 57) A number looks like this 1223 number 1) 2 2) 0 58) Missing term of series $\frac{1}{503}$, $\frac{1}{100}$ where a and b are relatively 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1	$,7$ 3) {9,10 re the vertices of $\triangle AE$ 5 3) $\sqrt{37}$ c circles is 14 and the 19). 3) 35 by another set of 4 pass 3) 28 334444555555	2),13} 4)None BC. the length of its median 4) 6 eir difference is 2. The area 4) 22 earallel lines. The number of 4) 12 What is the 200th digit of this 4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =_
1) {7,9,10} 2) {3,5 54) A(5, 1) B(1, 5) and C(-3, -1) a AD is 1) $\sqrt{34}$ 2) $\sqrt{32}$ 55) Sum of radii of two concentr of their annulus is(near 1) 88 2) 68 56) A set of 3 parallel lines are cur quadrilaterals of the network 1) 16 2) 18 57) A number looks like this 1223 number 1) 2 2) 0 58) Missing term of series $\frac{1}{503}$, $\frac{1}{52}$ where a and b are relatively 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1	$,7\}$ 3) {9,10 re the vertices of $\triangle AE$ 5 3) $\sqrt{37}$ c circles is 14 and the 1y). 3) 35 by another set of 4 pass 3) 28 334444555555	2),13} 4)None BC. the length of its median 4) 6 eir difference is 2. The area 4) 22 earallel lines. The number of 4) 12 What is the 200th digit of this 4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =_
54) A(5, 1) B(1, 5) and C(-3, -1) a AD is 1) $\sqrt{34}$ 2) $\sqrt{3}$ 55) Sum of radii of two concentr of their annulus is(near 1) 88 2) 68 56) A set of 3 parallel lines are cur quadrilaterals of the network 1) 16 2) 18 57) A number looks like this 1223 number 1) 2 2) 0 58) Missing term of series $\frac{1}{503}$, $\frac{1}{100}$ where a and b are relatively 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1	re the vertices of $\triangle AE$ 3) $\sqrt{37}$ c circles is 14 and the ly). 3) 35 by another set of 4 parts 3) 28 33444455555	BC. the length of its median 4) 6 eir difference is 2. The area 4) 22 earallel lines. The number of 4) 12 What is the 200th digit of this 4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =_
1) $\sqrt{34}$ 2) $\sqrt{3}$ 55) Sum of radii of two concentr of their annulus is(near 1) 882) 6856) A set of 3 parallel lines are cur quadrilaterals of the network 1) 162) 1857) A number looks like this 1223 number1) 22) 058) Missing term of series $\frac{1}{503}$, $\frac{1}{1000}$ 2) 559) The incentre of triangle with v of coordinates. 1) 2/132) 1	3) $\sqrt{37}$ c circles is 14 and the ly). 3) 35 by another set of 4 pa s 3) 28 33444455555	4) 6 eir difference is 2. The area 4) 22 earallel lines. The number of 4) 12 What is the 200th digit of this 4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =_
55) Sum of radii of two concentr of their annulus is(near 1) 88 2) 68 56) A set of 3 parallel lines are cur quadrilaterals of the network 1) 16 2) 18 57) A number looks like this 1223 number 1) 2 2) 0 58) Missing term of series $\frac{1}{503}$, $\frac{1}{100}$ where a and b are relatively 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1	c circles is 14 and the ly). 3) 35 by another set of 4 pa s 3) 28 33444455555	eir difference is 2. The area 4) 22 barallel lines. The number of 4) 12 What is the 200th digit of this 4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =_
1) 882) 6856) A set of 3 parallel lines are cu quadrilaterals of the network1) 162) 1857) A number looks like this 1223 number1) 22) 058) Missing term of series $\frac{1}{503}$, $\frac{1}{1503}$ where a and b are relatively 1) 32) 559) The incentre of triangle with v of coordinates.1) 2/132) 1	3) 35 by another set of 4 parts 3) 28 33444455555	4) 22 earallel lines. The number of 4) 12 What is the 200th digit of this 4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =_
 56) A set of 3 parallel lines are cur quadrilaterals of the network 1) 16 2) 18 57) A number looks like this 1223 number	2 by another set of 4 parts 3) 28 334444555555	barallel lines. The number of 4) 12 What is the 200th digit of this 4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =_
1) 16 2) 18 57) A number looks like this 1223 number 1) 2 2) 0 58) Missing term of series $\frac{1}{503}$, $\frac{1}{503}$ where a and b are relatively 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1	3) 28 334444555555	4) 12 What is the 200th digit of this 4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =_
 57) A number looks like this 1223 number 1) 2 2) 0 58) Missing term of series 1/503, 2 58) Missing term of series 2/503, 2 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1 	33444455555 3) 20 $\frac{1}{31}, \frac{9}{581}, \frac{16}{692},,$	What is the 200th digit of this $4)1$ $\frac{9}{287} \text{ is } \frac{a}{b} \text{ then } 40a \text{ - b } =_{-}$
1) 2 2) 0 58) Missing term of series $\frac{1}{503}$, $\frac{1}{503}$ where a and b are relatively 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1	$3) 20$ $\frac{1}{31}, \frac{9}{581}, \frac{16}{692},,$	4)1 $\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =
 58) Missing term of series 1/503, where a and b are relatively 1) 3 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1 	$\frac{1}{31}, \frac{9}{581}, \frac{16}{692}, $,	$\frac{9}{287}$ is $\frac{a}{b}$ then 40a - b =
 where a and b are relatively 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1 		
 1) 3 2) 5 59) The incentre of triangle with v of coordinates. 1) 2/13 2) 1 	prime numbers.	
59) The incentre of triangle with v of coordinates.1) 2/13 2) 1	3) 8	4) 24
1) 2/13 2) 1	ertices (0,0), (2,0),	, $(1,\sqrt{3})$ has sum of squares
1) <u>4</u> , 13 <u>4</u>) 1	3) 4/3	4) 2/3
60) The greatest Indian Mathemat the field of Statistics in 2023	ician who received pr	ize equal to Nobel Prize in
1) P.C.Mahalanobis	2) R.C.Gupth	ıa
3) C. R . RAO	4) P.C.ROY	